- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sitaraman, Hariswaran (2)
-
Yang, Suo (2)
-
Sanjeev_Taneja, Taaresh (1)
-
Taneja, Taaresh Sanjeev (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Self-consistent 1D modeling of streamers in ammonia-oxygen-nitrogen-water mixtures has been performed in this work. A fluid model that includes species transport, electrostatic potential, and detailed chemistry was developed and verified. This model is then used to simulate the avalanche, streamer formation and propagation phases, driven by a nanosecond voltage pulse, at different thermochemical conditions derived from a 1D laminar premixed ammonia-air flame. The applicability of the Meek’s criterion in predicting the streamer inception location was successfully confirmed. Streamer formation and propagation duration were found to vary significantly with different thermochemical conditions, due to the difference in ionization rates. The thermochemical state also affected the breakdown characteristics which was tested by maintaining the background reduced electric field constant. Detailed kinetic analyses revealed the importance of in the production of key radicals, such as O, OH, and NH2. Furthermore, the contributions of the dissociative electronic excitation of NH3towards the production of H and NH2radicals have also been reported. Spatial and temporal evolution of the electron energy loss fractions for various inelastic collision processes at different thermochemical states uncovered the input plasma energy spent of fuel dissociation and the large variability in the dominant processes during the avalanche and streamer propagation phases. The methodology and analyses reported in this work are key towards developing effective strategies for controlled nanosecond-pulsed non-equilibrium plasma sources used for ammonia ignition and flame stabilization.more » « less
-
Taneja, Taaresh Sanjeev; Yang, Suo; Sitaraman, Hariswaran (, American Institute of Aeronautics and Astronautics)The backward problem of plasma assisted combustion emphasizes evaluating the effect of the evolving thermochemical state on the plasma discharge. This paper investigates the dependence of avalanche to streamer to spark formation dynamics and kinetics on the gas composition and temperature at different points in an ammonia-air premixed laminar flame using a self-consistent multigrid-based 1D plasma solver. Different values of alpha, the coefficient for effective ionization events per unit length, have been reported for electron avalanches in air and stoichiometric NH3-air mixtures. The streamer inception has been shown to obey the Meek’s criterion. An exponential reduction in streamer and spark formation time has been observed from plasma simulations at different points in the unburnt, pre-heat zone, reaction zone and the fully burnt regions of the premixed flame. While the enhancement of the reduced electric field with increasing temperature affects effective ionization, there exists a minimum breakdown field for streamer formation, which does not vary proportionally with the changing number density of the gas. The change in the mixture from reactants (NH3, O2, N2) to products of complete combustion of ammonia in air (N2, H2O) has also been shown to affect the streamer and spark formation. Finally, the major pathways during the streamer and spark phases which are responsible for producing important radicals used in combustion of NH3 are also discussed.more » « less
An official website of the United States government
